
The 3rd International Workshop on High-Order CFD Methods Case 1.3

Flat plate boundary layer - Problem C1.3

Farshad Navah∗, Brian Vermeire†, Siva Nadarajah‡

McGill University, Computational Aerodynamics Group

Case description

The problem aims at evaluating high-order solvers in computing the drag generated by airflow
over a zero-thickness flat plate with a null angle of attack. The flow is laminar (Re = 1 ·106),
compressible (Ma = 0.5) and governed by the 2D Navier-Stokes equations, considering a
ratio of specific heats of 1.4, a Prandtl number of 0.72 and constant dynamic viscosity.

Code description

The conservation laws are discretized by the correction procedure via reconstruction (CPR)
scheme with DG correction functions [1]. The divergence of the inviscid fluxes are determined
either through a chain rule or Lagrange polynomial approach. The Roe flux is employed
as the common interface flux and the BR2 scheme for the viscous flux. As for boundary
conditions, Riemann invariants are used in the far-field, while either slip or adiabatic non-
slip on the walls. The dynamic viscosity coefficient is either held constant throughout the
computational domain or obtained from the Sutherland’s law. For the flat plate boundary
layer case, the former is employed. Steady state solutions are obtained by using a Newton-
Krylov algorithm, which serves as the primary solver. The sparse linear system of equations
are solved using GMRES included in the PETSc package version 3.2-p7 along with the
additive Schwarz method (ASM) as pre-conditioner. Before GMRES is employed, several
block-Jacobi iterations are often performed. The solver is parallelized using MPI via Open
MPI, version 1.4.3 where grid partitioning is achieved through ParMETIS. An implicit-
explicit (IMEX) scheme [2] serves as a secondary solver, where a three-stage diagonally
implicit Runge-Kutta (DIRK) is used. Each stage is split between an explicit and implicit
sub-stage, where the non-stiff regions are solved with an explicit RK, while the stiff portions
are solved through the above stated Newton approach. For the flat plate case, the IMEX
solver was not employed. Post-processing is typically performed with Tecplot 360 and/or
Gmsh version 2.8.5.

Computations

The solution is initialized by freestream conditions. The L2 norm of the x-momentum residu-
als is monitored to assess the convergence of the iterative solution by ensuring that the initial
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residuals are reduced by at least 10 orders of magnitude. The residuals are computed in the
same way as suggested in the Third High-Order CFD Workshop guidelines.

The Guillimin cluster of the McGill high performance computing (MHPC) infrastructure,
part of the Compute Canada and Calcul Québec HPC networks, served for the most intensive
computations that used 4, 16 or 32 cores in parallel on two different architectures: sw and
sw2/lm2. The rest of the calculations are performed on a quad-core personal computer (PC).
Machine specifications and Taubench results are presented in Table 1.

Machine name Specifications Taubench CPU times (s)

MHPC-(sw)
Dual Intel Westmere EP Xeon X5650
(6-core, 2.66 GHz, 12MB Cache, 95W)

9.5

MHPC-(sw2/lm2)
Dual Intel Sandy Bridge EP E5-2670

(8-core, 2.6 GHz, 20MB Cache, 115W)
8.1

PC
Intel i7-4770 CPU

(4-core, 3.40 GHz, 8MB Cache)
4.8

Table 1: Computer specifications

Meshes

A series of quad meshes is produced by removing every other line out of the a5-125-2s.msh
mesh (provided by the First High-Order CFD Workshop), to which 5 levels of coarsening
have been applied: from L-0 (original mesh) to L-4. As for the a5-125-2s.msh, the smallest
elements are a pair of squares, symmetrical to the y axis and located at the leading-edge of
the flat plate and the edge size growth ratio in each direction is found by considering a finite
geometrical series. Table 2 provides the mesh characteristics.

Mesh L-4 L-3 L-2 L-1 L-0 (a5-125-2s)

No. elements (x× y) 28 × 20 56 × 40 112 × 80 224 × 160 448 × 320

No. elements on plate 18 36 72 144 288

Leading-edge spacing 45.2×10−5 20.4×10−5 9.72×10−5 4.74×10−5 2.34 × 10−5

Off-wall spacing 45.1×10−5 20.4×10−5 9.72×10−5 4.74×10−5 2.34 × 10−5

Table 2: Mesh characteristics

Sensitivity analysis

The sensitivity to the domain size is studied by taking the mesh a3-125-2s.msh (8, 960 el-
ements) of the First High-Order CFD Workshop as baseline. This mesh has the following
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Figure 1: Domain size sensitivity analysis
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domain size parameters: LH = 1.25 and LV = 2 which are respectively horizontal and vertical
scales relative to the flat plate length. The drag solution is computed for the flow conditions
described above and using a P4 polynomial discretization. The domain of the original mesh
is extended once vertically, once horizontally and once in both directions simultaneously as
illustrated in Figure 1. A layer of elements is added in each direction by respecting the
original grid topology and cell size growth ratios. The added layers are coloured in magenta
in Figure 1. The drag coefficient is recomputed in each case. The Cd results in Table 3
demonstrate that the domain described by the parameters LH = 1.25 and LV = 2, has a
lesser influence on the drag than 0.01 of a count. This domain size is hence used for all of
the computations.

HHH
HHHHLH

LV 2.000 2.201

1.250 13.124 × 10−4 13.122 × 10−4

1.526 13.125 × 10−4 13.123 × 10−4

Table 3: Sensitivity of Cd to domain size parameters LH and LV

Results

The results for this case are presented in Tables 4 and 5 and Figures 3 and 4. Figure 2 shows
the convergence of the x-momentum residuals for the L-2 grid and P1 to P5 solutions.

Consecutive p and h refinements are conducted until a minimal convergence of 10−6 in
drag coefficient values is achieved (see Table 4). For Cd error computation, P5 solutions
on meshes L-2 to L-0 are extrapolated by a Richardson formula [3] to yield the continuum
solution estimate of Cd = 1.31268 × 10−3. The P5 solution on the L-0 grid was obtained by
starting the computations from an interpolated P4 solution on the same grid. This solution
is hence excluded from the work unit comparisons.

For P1 to P4, the plot of Cd error versus grid spacing in Figure 3 (a) shows converging
values on the coarsest grids only, whereas the error increases as the grid is further refined. For
P5, the asymptotic convergence is reached but the convergence rate is 1.2. These observations
can be attributed to the presence of a singularity at the leading-edge of the flat plate. The
local discretization error at the singularity evolves differently compared to the smooth flow
regions. This negatively affects the monotonicity of the drag convergence and the precision
of the continuum solution estimate via Richardson extrapolation.

To evaluate the impact of the singularity on the drag convergence, 0.35% of the flat plate
length from the leading-edge is excluded from the drag computation. The reference value is
recomputed in a similar fashion as for the full plate. The evolution of estimated errors versus
mesh refinement is shown in Figure 3 (c). The error reduces with mesh refinement for all
degrees of polynomial discretization. The corresponding convergence rates are computed by
considering the two and three [3] finest solutions of each polynomial degree. The comparison
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of 2-point versus 3-point convergence rates, presented in Table 5, reveals that the asymptotic
convergence can only be assumed for P2, P4 and P5. However, only the convergence rate of
P2 is in agreement with the theoretically expected value of 3.0. Improving the convergence
of P3 to P5 solutions in a future work could be achieved by either decreasing the off-wall
spacing or by starting the drag computation from a further point on the plate. A less heuristic
approach would consist of controlling the discretization error via adaptation.
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(a) Density residuals vs. iterations
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(b) Density residuals vs. work units

Figure 2: Iterative convergence

Polynomial Mesh
degree L-4 L-3 L-2 L-1 L-0

P1 − − 13.223×10−4 13.126×10−4 13.125×10−4

P2 14.329×10−4 13.374×10−4 13.162×10−4 13.126×10−4 13.123×10−4

P3 13.551×10−4 13.170×10−4 13.124×10−4 13.123×10−4 −
P4 13.857×10−4 13.124×10−4 13.124×10−4 13.124×10−4 −
P5 13.427×10−4 13.123×10−4 13.125×10−4 13.126×10−4 13.126×10−4

P6 13.050×10−4 − − − −
P7 13.133×10−4 − − − −
P8 13.128×10−4 − − − −
P9 13.125×10−4 − − − −

Table 4: Drag coefficient (Cd) values; drag computed on full plate
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(a) Cd error (full plate) vs. h
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(b) Cd error (full plate) vs. work units
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(c) Cd error (0.0035 ≤ x ≤ 1) vs. h

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Work Units

C
D

 E
rr

o
r

 

 

P1

P2

P3

P4

P5

(d) Cd error (0.0035 ≤ x ≤ 1) vs. work units

Figure 3: Cd error results

polynomial Convergence rates
degree 3-points 2-points

P1 4.5 2.5

P2 3.3 3.0

P3 4.7 3.4

P4 3.4 3.2

P5 3.3 3.3

Table 5: Estimated rates of convergence to the continuum solution;
drag computed on (0.0035 ≤ x ≤ 1)
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(a) Cd vs. work units - h-convergence
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(c) Cd vs. h

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

DOFs

W
o

rk
 U

n
it
s

 

 

P1

P2

P3

P4

P5

(d) Work units vs. DOFs

Figure 4: Cd results
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